
Jacob Howard

Some Context on
Docker Contexts

Docker Captain
Founder @ Mutagen

@xenoscopic

● Not a monolithic component
● Uses a RESTful HTTP API
● Many different clients, including:

○ Docker CLI
○ Docker Compose
○ Docker Desktop Dashboard

● Multiple transports, including Unix
Domain Sockets, Windows Named Pipes,
TCP, TCP+TLS, and SSH

● Offers easy access to remote engines

The Docker Engine Architecture
A client/server architecture built on HTTP

HTTP API

D
ocker E

ngine

$ docker ...
$ docker compose ...
$ docker stack ...

D
ocker C

lients

Transport

● Docker clients typically default to /var/run/docker.sock
● You can override this with command line flags
● DOCKER_HOST is the traditional override mechanism, e.g.

○ export DOCKER_HOST=unix:///some/other/docker.sock
● But you might also need...

○ DOCKER_TLS
○ DOCKER_TLS_VERIFY
○ DOCKER_CERT_PATH
○ DOCKER_API_VERSION

● This can make switching engines tedious and error-prone

Targeting Docker Engines

● Better emulate your production environment
● Use a different machine for builds
● Develop and test in the cloud
● Manage deployment

Why Multiple Docker Engines?
Building, Testing, and Deployment

An easy way to store connection
information and work with
multiple Docker Engines
(and other container platforms).

Docker Contexts

Using Docker Contexts
TERMINAL

Create a Docker Context

$ docker context create <name> --docker “host=<url>”

Set a Docker Context as active

$ docker context use <name>

Manually specify a Docker Context to use

$ docker --context <name> compose ...

Switch back to the Docker Desktop context

$ docker context use desktop-linux

Switch back to DOCKER_HOST-based functionality

$ docker context use default

The default Context
A built-in context that reverts to DOCKER_HOST-based engine
targeting and configuration.

The Active Context
The currently selected context (set via docker context use) that’s
being used when no context is specified on the command line.

default vs Active Context

● Docker Contexts provide a general abstraction layer for
container platforms

● You can create contexts for:
○ Docker engines
○ Docker swarms
○ Kubernetes clusters
○ Azure Container Instances (ACI)
○ Amazon Elastic Container Service (ECS)

● You can use docker stack and docker compose to deploy
projects to these platforms

Down the Rabbit Hole...
Accessing other container platforms

So, basically, Docker Contexts are:
● A robust way to encapsulate configuration
● An easy way to switch between Docker Engines
● The only way to access cloud integrations

Thanks for listening!
Send me your questions,
feedback, and
Docker Context life hacks!

@xenoscopic

