
Jacob Howard
Docker Community All Hands
11 March 2021

ENTRYPOINTs for 
Development

Container Workflows
Container tooling was primarily designed to run
static, long-lived processes in production.

Development is typically more dynamic:
• Recompiling applications
• Reloading applications
• Rebuilding static dependencies
• Interactive usage (via a shell or REPL)
• Interactive debugging

Aligning perfectly with production can be limiting.

What workflows and patterns do 
we have for development?

Automated

Automatic Hot Reload

External Watch-Based Reload

Rebuild/Re-Run on Start

Manual Sidecar run

Full Image Rebuilds

Interactive

Container exec

Interactive ENTRYPOINT

Run Outside Container

Automation Patterns

Automatic Hot Reload
Many build tools and frameworks support fast automatic
rebuilds and reloads on changes

Automation Pattern 1

Example: Use Hugo's server mode to monitor the bind

mount at /site for changes and automatically reload

ENTRYPOINT ["hugo", "server", \

 "--bind", "0.0.0.0", \

 "--source", "/site" \

]

External Watch-Based Reload
Automation Pattern 2

If your framework doesn't support hot reloads, you can
use an external tool to watch for filesystem changes and
restart your code

Example: Use an external tool (nodemon) to watch code

for changes and restart a Python application

ENTRYPOINT ["nodemon", \

 "--watch", "/server", \

 "/server/main.py" \

]

Rebuild/Re-Run on Start
Automation Pattern 3

For more direct control over the rebuild or restart
boundaries of your application, you can tie your build to
container start / restart

Example: Recompile and run Go code on container start

ENTRYPOINT ["go", "run", "/code/server"]

Restart the service to rebuild code

$ docker-compose restart web

Manual Sidecar run (pt.1)
Automation Pattern 4

You can also use Compose (+profiles) to define reusable
commands as services that run on demand

Example: Regenerate a static site to a shared volume

ENTRYPOINT ["hugo", "-s", "/site", "-d", "/public"]

Example: Run a benchmark of another service

ENTRYPOINT ["ab", "-n", "100", "-c", "10", "http://api/"]

Example: Cross-compile code for Linux

ENTRYPOINT ["make"]

Manual Sidecar run (pt. 2)
Automation Pattern 4

You'll use Compose profiles to stop these commands
from running by default with docker-compose up:

services:

 <name>:

 build:

 context: <path/to/Dockerfile/directory>

 profiles:

 - adhoc

 ...

You can run these commands with docker-compose run:

$ docker-compose run --rm <name>

Full Image Rebuilds
You can tell Docker Compose to rebuild images on every
run (in case you build code in images):

Automation Pattern 5

Ideally use only when absolutely necessary (e.g. multi-stage
builds); try to target more precisely:

$ docker-compose up --build

$ docker-compose build <service>

$ docker-compose up

Interactive Patterns

Container exec
Interactive Pattern 1

Dropping into a shell in an existing container can be a
useful technique for debugging:

$ docker-compose exec <service> /bin/sh

You can also do this with the Docker CLI:

$ docker exec -it <container> /bin/sh

And use other shells:

$ docker-compose exec database psql

Interactive ENTRYPOINT
Interactive Pattern 2

For less ad hoc usage, you can define an interactive
ENTRYPOINT

Example: Create a container that runs an IPython shell

ENTRYPOINT ["ipython3"]

Example: Create a container that runs a psql shell

ENTRYPOINT ["psql", "-h", "database", "appdb"]

• Shipping reproducible interactive environments
• Defining interactive sidecar services in Compose

Useful for:

Run Outside Containers
Interactive Pattern 3

With Docker Desktop, you can communicate with network
services running on the host system using
host.docker.internal

• Initial or partial containerization
• Using host-side tools (IDE, profiler, etc.)
• Interfacing with external infrastructure

Useful for:

One more thing...

Signals
There's one important gotcha when using
development tools for container 
ENTRYPOINTs: signals

Different shells, language runtimes, and build
tools handle (or don't handle) signals differently.

The solution is to use an init process.

Handling Signals
Docker Compose makes this trivial:

Use an init process to wrap a service ENTRYPOINT

services:

 my_build_service:

 init: true

For the CLI, use the --init flag when creating
containers (via create or run).

Takeaways
We need to push containers further to fully
extract their value for development.

The best practices, ideas, and idioms are almost
certainly still to come.

Keep an eye on the Compose Spec and Docker
Desktop for new features and ideas.

Examples available at
github.com/havoc-io/entrypoints-for-development

Thanks for your time!

Ping me with questions or feedback
@havoc_io

havoc.io/talks/entrypoints-for-development
Slides available at

